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Abstrael m e  quanlum group for the ZN model is sludied from lhe bnid group 
representalion. ?he fundamrnlal representalion is mnsirucred from the Weyl relalion 
ZX = w X Z  with w k i n g  an Nth mat of unity. In the case of N = 2 (the eight 
vena model), the quanlum group is shown to be a homomorphic image of the GLq(2) 
with gz = 1. 

Baxter’s eight-vertex model [l] was one of the original sources used in inventing the 
quantum group. The solutions of the associated Yang-Baxter equation (YBE) are 
parametrized by elliptic functions [1-4,13]. They have WO degenerate forms: the 
trigonometric and rational solutions of the YBE. These two degenerate forms give the 
well h o w n  quantum group SL,(2)  and the Yangian Y(SL(2)) respectively, which 
are intensively studied both in mathematics and physics. 

Although as early as 1981 Sklyanin [14] carefully defined his quantum algebra of 
the eight vertex model by analysing a special ansatz for the solution of the YBE, and 
more recently the Sklyanin algebra is arousing increasing interest, we still do not h o w  
whether or not the Sklyanin algebra can be equipped with a Hopf algebra or even a 
bialgebra structure. One way to get around this problem using a different approach is 
first to study the quantum group associated with the braid group representation (BGR) 
or the spectral-parameter independent YRE, since the latter is canonically associated 
with a bialgebra structure. Then one tries to apply the algebra to the case of the 
YBE with the spectral-parameter dependency using the so-called Yang-Baxterization 
procedure. 

In the present work we study the quantum group associated with the Z,,, model, 
which includes the eight vertex model (A‘ = 2). The Z,., model [I, 5, 6, 121 is defined 
by requiring the Boltzmann weights ${, i , j , k , l  E Z, to satisfy the following Z,., 
symmetry 

. .  
s;: = 0 unless i + j E k + 1 (mod N )  (1) 

All correspondence should be directed lo N-H Jing. 
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Moreover the matrix S = ( S y l )  E End(CN@CN) satisfies the spectral parameter 
independent YBE or the braid group relation 

s,,s,,s,, = S,,S,,S,, (3) 

where S,, = S 8 1, S,, = 1 8 S E End(CN 8 CN 8 CN). 
The BGR of the Z, model was studied in (71. We are going to insert an extra 

parameter w ( w N  = 1 )  into their solutions of the BGR for the Z, model. It will be 
Seen that this extra parameter w plays a similar role to the parameter q in quantum 
grow.  

We will analyse the eight vertex model ( E 2  model) in this context in great detail 
and show that the quantum group of the Z, model is a homomorphic image of the 
GL,(2) with g2 = 1. For general N, we shall give its fundamental representation in 
terms of the Weyl relations [8] 

zx = wxz Z N  = A" = 1 w is an Nth root of unity. (4) 

In the case of N = 2, we show that the quantum algebra has a Hopf algebra 
structure by adjoining the determinant. In the general case the algebra is canonically 
a bialgebra. Whether one can introduce an antipode is not clear at the moment, but 
we expect a similar situation to N = 2 exists. 

In the remaining part of the letter we assume the ground field is that of the 
complex numbers, though all the results are true for any algebraically closed field 
with characteristic zero. 

We start by examining the eight vertex model. 
The general S-matrix (or the first-factor transposed R-matrix) for the Z, model 

is of the following type 

It is easy to check that S satisfies the braid rclation (3) if and only if the following 
conditions hold 

c -2 - - U  ,,2 (6) "2 - l.2 
U - "  

From now on we assume that the relation (6) is satisfied. From the methods of 
quantum inverse scatterings of the Pdddeev school (91, the quantum algebra associated 
with S is an associative algebra A( 5') (or sometimes denoted by A( R)) generated 
by zij , i, j = 1 , 2  and the unit 1 subject to the following relations 

s ( z @ z ) = ( z ~ z ) s  (7) 

where (z @I z)yl  = zik @ z j , .  
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Proposition 1. If a # c , ad  # 0, then the algebra A ( S )  is an associative algebra 
generated by xij , 1 with the following relations 

(8) =2 - 2 x2 - 2 
12 - x 2 1  

2'11x22 = X22X11 X I ? X 2 1  = 5212'12 (9) 
x 1 1 x 1 2  = W ~ l Z ~ l l  X21X22 = WXZ?z'21 (10) 
2 1 1 x 1 2  = W'XZ,X?2 (11) 

I 1  - 3'22 

where w = a / b  and U' = c/d. In other words, the algebra A( S) is a homomorphic 
image of the quantum group G L , ( 1 )  with q = w. The element d e t  = x11x22 - 
wx12xz1 is central. 

Proof. Expanding the matrix equation (7), we obtain the relations (8) and (9) and 
two other sets of similar relations in x l l , ~ 1 2 r x 2 1 r x 2 2  and x11,x21rx12rx22. A 
typical set of relations in x11,x12,x21, x22 takes the following form 

From substitution of (14) and (15) into (16) it follows that 

- 2 a ( a  - c)zl1xI2 + 2b(u  - c)xI2zCl l  = 0 

which is the first relation in (10) provided U # c. Other relations in (10) and (12) 
are shown similarly. The relations (11) and (13) then follow by back substitutions 

0 

We add the inverse of det  to the algebra A( S), which will then become a Hopf 

into (14)-(17) and the similar equations. 

algebra with the antipode y given by 

The fundamental two-dimensional representation 71 of the algebra A( S) can be 
constructed from the S-matrix, as suggested in 19-11). k t  

~ ( x , )  j,, = s;; i , j ? k , l  E Z? (is) 

then the braid relation assures that this defines an algebra representation of the 
algebra A( S). 
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Explicitly A is given by 

In other words, the representation is constructed by the Weyl relation and can be 
written neatly as follows 

. = ( I  w )  1 )  zx = w s z  w2 = 1 (19) 

Proposirion 2. Every non-trivial finite-dimensional irreducible representation of 
A( S) is two-dimensional. 

Pro$ Let ( A ,  V) be a finite-dimensional representation of A = A ( S ) .  If Aa: = 
ZA and A y  = yA are two cyclic ideals annihilating each other such that z y  = 0, 
then either a(.) = 0 or s(y) = 0. Otherwise we have two non-zero A-invariant 
subspaces of V, thus V = n(z )V  = r ( y ) V ,  which is a contradiction. 

Based on this fact and relations ( S ) ,  the representation T must factor through 
either A ( z l l  - zzz) or A(zll  + zzz). Moreover, li must also factor through A(zlz  - 
w'zzl) or A ( z l z + ~ ' z z l )  correspondingly because of relations (11) and (13), i.e. we 
need - oniy consider irreduciiie representations oi one of the quotient aigebras, say 
A = A/(z l l  - x Z z ,  zlZ - w'zZ1). Notice that the centre of the quotient algebra is 

C(A/(ml, - ~ Z Z , Z ~ ~  - w ' z ? I ) )  = (Z;l,T:2) 

where T::.v:? are the representatives of z:l,z:2 in the quotient algebra x. Hence 
and are represented by scalar matrices. The only relations in 2 is 

Tl,v'z = WTIZT1,. 

Therefore there are only two-dimensional non-trivial irreducible representations 
0 

We now go on to look at the Z, model. The braid representations of the Z, 
model was studied in [7], where the explicit forms of the S-matrices were given up 
to N = 5 .  We first summarize their result as follows. 

[SI, since T,l,?Flz are essentially represented by Weyl operators u p  to resealing. 
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Let 

(21) 
-i 
Si ,= c ~ , 6 ( ~ ) ( i - 1 - n ) 6 ( ~ ) ( j - I c + n ) =  Syl(n) 

O<n<N-l O<n<N-l 

where 

j E O(mod N) 6 " ) ( j )  = [ * 
0 otherwise. 

The S-matrix Satisfies the YBE (3), which is in the explicit form 

c s i j  P" s u k s P , \  An Im = c s ~ s i A s v ~  P IP m n .  (22) 
A P U  A @ "  

However we are going to introduce a discrete parameter w,wN = 1 into the 

Our new S-matrix S is defined by 
S-matrix S as follows. 

. .  
SLJl = wn6("(i - 1 - n ) d N ) ( j  - k + n ) w i W k  (23) 

O<n<N-I  

where w is an Nth root of unity. 

vation 
The satisfication of YBE of our new S-matrix is vcrified from the following obser- 

ij --vk-wA ,+,,,+,,-i-,-l; 
~ " I . " s h s l m w  
AP" 

= q" (a )q : (P)S f ; , l ( r )  
AP"YP7 

, (At7)+(@-7) t l" -B) - (e fa) - (p-o) - (h-P)  

AN" 

If we arrange the indices of S in the following order 

(ij)= 1 1 , 1 2 . 2 1 , 1 3 , 2 2 , 3 1 ,  . . . ,  N N .  

Then the matrix S, for example when N = 3, takes the following form 

S =  
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~ 

~ 

We can form the quantum algebra A( S) as above. The algebra A(  S) is an 
associative algebra generated by N 2  generators z i j ,  i , j  = I , .  . . , N with unity and 
subject to the following conditions 

S(z 63 z) = (2 c3 z)S (25) 

where t = (zij). 

under the coproduct A 
On the free associative algebra C{zij 11 < i, j < N) there is a bialgebra structure 

N 

A(zi j )  = 1 z ik  @ z k j  (26) 
k = l  

which is extended linearly and multiplicatively, and 1 + 1 C3 1. The m-unit is given 
by 6 = zij + 0. 

The bialgebra structure on the free algebra induces a bialgebra structure in a nat- 
ural way provided that the defining relations (25) are presewed under the coproduct. 
This can he checked as follows. 

The defining relations (25) are written explicitly as 
I1 

S,$("kn,'ln) = c ( z i k " j l ) S , , "  
k.1 k . l  

From which it follows that 

c s 2 1 a ~ k m ) ~ ( ~ l n )  
k.1 

= S 2 i X l r a X 1 4  c3 z,,,,xpn 
k . l , o , P  

k , l  0 . 4  

k , l . o , @  a $0 
= z i k z j l @  zkozlOSzf i  = C A ( z i , ) A ( z j B ) S ~ ~ .  

Thus A( S) is well-defined and has a bialgebra structure under the coproduct and 
co-unit. 

We can use Weyl relations to give a finite-dimensional representation for the 
algebra A ( S ) .  Consider the following two operators S, Z on the N-dimensional 
complex space CN with following relations (81 

zx = wxz Z N = S N = 1  (27) 

which is referred to as the Weyl relation. The operators X, Z generate a finite 
subgroup in End ( C N ) ,  and they further generate a finite-dimensional algebra, called 
a Weyl algebra. 
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Theorem. The assignment T : zij  + w .  . Z X J - i ~ i - l  gives rise to an N- 
dimensional representation of the quantum algebra A( S). 

Proof. Substituting S;k and the assignment of zij into the defining relations of 
A( S), we want to show the following identity 

J - I  

~ 2 , ~ ( k - n ) + ( l - m ) W 2 i t j - u , - ?  

Finally premultiplying both sides by u m - 2 i - j + 2  2-2 it follows that the above 
equation is equivalent to the following relation 

- I - ~ ) 6 ( ~ ) ( j  - k + p )  
p 3 k J  

= ~,,w~.~w~-~6(~)(k- ? ~ - p ) 6 ( ~ ) ( 1 -  m + p )  
P , ~ ! ~  

which is triviai. 0 

Remark. A similar argument also show that r ' ( z i j )  = w~-~ZA'J-~W-(J-~) gives ' 

another representation of the algebra A(  S), which can also be obtained from the 
following relation 

T ' ( z i j ) k l  = s;; 

The latter representation is referred as the lundamental one given the reference 
to the S-matrix. For example, when N = 3 we have 

It is interesting to notice that the Weyl algebra is also a representation of the 
multiparameter quantum group G L p , j , q j i ( N )  with p;' = q . .  ' I  = wi-J. 
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The multiparameter quantum group is a Hopf algebra GLpi,,q, ,(  N) generated 
by N Z  elements xij and 1 with the following relations 

l i l X i k  = q k l X i k x i l  k < l  
"jkxik = P;jxik"jk i < j  

xilxjk + qijxjlxik - q k l X i k x j l  - ~ijqklxjhxil = 
xilxjk + PG1"jlxik - P;;xikxjl - Pij -1 Pkl - I x .  )k z. 1 1  = o  

i < j , k  < 1 

i < j , k  < 1 .  
. .  

The coproduct is defined as usual: A(xij) = &xik @ x k j .  There is also a 
determinant element in G L p , i , q 8 . (  N),  which will not be needed explicitly. What we 
call the quantum group is actually the algebra obtained by adjoining the inverse of 
the determinant, with which the antipode is defined. 

The quantum algebra G L p ; , , q , i ( N )  with p:.' = 9. .  = w'-J has also the same 
representation in terms of the Weyl algebras. The assignment p(xij) = w ~ - ~ Z X J - '  
gives the fundamental representation. Thus we have the following diagram 

. .  

ZJ :I 

GL,i-i(N) 2 A ( S )  

I .L 
End(CN)  = E n d ( C N )  

In the case of N = 2 the question mark arrow is a homomorphic mapping. We 
suspect that there is a possible relation between GL,.- , (N)  and the algebra A(.$),  
which may require futher techniques to attack. If this is ture, it will be much easier 
to study the irreducible representations of A( S). 

We are sincerely grateful to Professor C N Yang Cor his interest in the work and 
encouragement. The exact formula of (21) was obtained in a discussion with him. 
We also thank H K Zhao and K Xue for discussions. Ge and Liu greatly acknowledge 
the support of the Chinese National Science Foundation. 
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